
Journal of Geodesy (2022) 96:80
https://doi.org/10.1007/s00190-022-01670-5

ORIG INAL ART ICLE

Combination of different observation types through amulti-resolution
representation of the regional gravity field using the pyramid
algorithm and parameter estimation

Qing Liu1 ·Michael Schmidt1 · Laura Sánchez1

Received: 17 May 2021 / Accepted: 24 September 2022 / Published online: 18 October 2022
© The Author(s) 2022

Abstract
The optimal combination of different types of gravity observations is the key to obtaining a high-resolution and high-precision
regional gravity model. Current studies based on spherical radial basis functions (SRBFs) majorly consider a single-level
approach for data combination. Despite the promising results reported in numerous publications, it has been suspected that the
single-level model might be biased towards high-resolution measurements. Instead, a multi-resolution representation (MRR)
can be applied to further take into consideration the varying spectral sensitivities of different observation techniques. In this
study, we develop a new MRR scheme based on the pyramid algorithm and sequential parameter estimation. We propose
strategies to solve the challenges in the practical application of the pyramid algorithm, and this study represents its first
successful realization in regional gravity field modeling. The modeling results based on both simulated and real gravity data
show that either the single-level approach or the MRR without pyramid algorithm is able to capture gravity information from
lower resolution measurements as sufficient as our newly developed MRR algorithm. In the simulated case, the RMS error
w.r.t. the validation data obtained by the MRR based on the pyramid algorithm decreases by 50% and 35%, in comparison
to that of the single-level model and the MRR without pyramid algorithm, respectively. In the real case, the improvement
achieved by the MRR based on the pyramid algorithm is 35% and 23% in the onshore area, and it reaches 63% and 57% in
the offshore area, compared to the single-level approach and the MRR without pyramid algorithm, respectively.

Keywords Heterogeneous data combination · Multi-resolution representation · Pyramid algorithm · Regional gravity filed
modeling · Spherical radial basis functions

1 Introduction

Regional gravity field modeling is an important topic in
geodesy; it plays an essential role for applications in geo-
physics and physical height system realization. A high-
resolution and high-precision geoid model derived from
regional gravity field modeling is the key to the realization of
the International Height Reference System (IHRS, Sánchez
et al. 2021). In the last decades, spherical radial basis func-
tions (SRBFs, see e.g., Freeden et al. 1998; Freeden and
Michel 2004; Schmidt et al. 2007) have been widely used for
regional gravity field modeling. Thanks to their localizing
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features in both the spectral and the spatial domain, SRBFs
are an appropriate approach to consider the heterogeneity of
different gravity data types with varying spectral and spatial
resolutions.

In regional gravity field modeling, local high-resolution
gravity measurements (e.g., terrestrial, airborne, and ship-
borne gravity data) are usually combined with medium-
resolution data (e.g., inferred from satellite altimetry mis-
sions) and low-resolution global data provided by dedicated
satellite gravity missions, such as the Gravity Recovery and
Climate Experiment (GRACE, Tapley et al. 2004) and the
Gravity Field and Steady-State Ocean Circulation Explorer
(GOCE, Rummel et al. 2002). Each observation technique
has different spectral sensitivities and varying data distri-
bution. Thus, a data combination method that extracts the
maximum gravity information from different measurements
is required to ensure the best possible high-precision regional
gravity model. Typically, the data combination based on
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SRBFs is implemented using a single-level approach (see,
e.g., Bentel et al. 2013a, b; Lieb et al. 2016; Bucha et al.
2016;Wu et al. 2017a, b; Liu et al. 2020a, b). In this approach,
different observation techniques are combined at the max-
imum degree of expansion, and their contributions to the
final gravity model are determined by the relative weight-
ing between each data set. This approach is straightforward,
and promising modeling results have been reported in the
aforementioned publications. However, the contribution of
measurements withmedium to low resolution (e.g., altimetry
data, satellite gravity data) could be understated, since they
are not sensitive at high spectral degrees. For instance, Klees
et al. (2018) demonstrate that the single-scale model lacks
the flexibility to deal with data sets of significantly different
bandwidths, while Wu et al. (2018) state that the single-level
approach may fail to extract the full information contained
in the gravity data.

To take the spectral sensitivity of different observation
techniques into consideration and to combine heterogeneous
data by spectral weights, a spectral combination can be
applied (see, e.g., Sjöberg 1981; Kern et al. 2003; Denker
2013). The spectral combination based onSRBFs can be real-
ized through a multi-resolution representation (MRR). The
MRR of the gravity field was initially proposed by Freeden
et al. (1998), Freeden (1999), andHaagmans et al. (2002), and
its realization has been investigated in the last two decades.
TheMRR is often associated with wavelet functions. Kusche
et al. (1998) conclude that the spherical wavelet functions
show outstanding properties in the medium frequency band,
and they are thus recommended for modeling the medium
wavelength part of the gravity field. Beylkin and Cramer
(2002) present several multi-resolution gravity models and
show their performance results. Fengler et al. (2007) set up an
MRR approach based on GRACE data using the cubic poly-
nomial (CuP) wavelets and show that they are an appropriate
tool to investigate regional and temporal variations of the
Earth’s gravity field. Panet et al. (2011) introduce the itera-
tive domain decomposition by extending the Poissonwavelet
modeling approach (Holschneider et al. 2003) to combine the
surface (land,marine and altimetry) gravity datawith satellite
gravity data. Bolkas et al. (2016) state that wavelet decompo-
sition is a useful tool for fusing terrestrial gravity data with
satellite and airborne data and show that the multiscale fused
model is able to fill data gaps.

Schmidt et al. (2005, 2006, 2007) develop an MRR
approach where the representation is decomposed into an
expansion in terms of spherical harmonics for the long-
wavelength part, and a number of frequency-dependent detail
signals in terms of wavelets for the medium and high fre-
quency parts. This MRR was applied for regional gravity
field modeling by Lieb (2017) and Wu et al. (2018), where
the coefficients for calculating the detail signals are estimated
simultaneously at each resolution level, using all or selected

data groups. However, if all observation types are used at
each level, the corresponding detail signals are strongly cor-
related (Lieb 2017). If only specific data sets are used, large
data gaps may occur, and the prior information is insuffi-
cient for filling these data gaps at higher resolution levels.
This leads to large erroneous effects in the output signals.
Consequently, Lieb (2017) recommends for future work the
implementation of the pyramid algorithm (Freeden et al.
1998) to consider all available information by connecting the
different levels. Klees et al. (2018) show that a two-scale (or
multi-scale) model needs to be applied in combination with
a sequential estimation of the scale-dependent coefficients.
The sequential estimation can be realized by applying the
pyramid algorithm, which determines the coefficients of the
lower resolution levels sequentially from the coefficients of
the higher level, by successive low-pass filtering.

Although the pyramid algorithmwas proposed nearly two
decades ago, its practical application based on parameter
estimation has never been realized in regional gravity field
modeling, until this study. This is due to the challenges of
applying the pyramid algorithm in the regional case, as stated
by Lieb (2017): (1) it is difficult to set up a proper low-pass
filter matrix in the regional case, and (2) the margin size has
to be adapted appropriately at each level to minimize edge
effects.We come up with methods in this study to solve these
difficulties: (1) a low-pass filter is newly introduced in case
of using the Reuter grid; (2) the choice of the margin size and
the setting up of the estimationmodel at each resolution level
are characterized; (3) strategies for reducing edge effects in
the calculated detail signals are proposed.

A new MRR scheme based on the pyramid algorithm is
developed, as visualized in Fig. 1, the text in blue highlights
the novelty of this work. One main innovation is the real-
ization of the sequential parameter estimation in the MRR
scheme. The coefficients are firstly estimated at the highest
chosen resolution level I using only the high-resolution data
set(s) 1, and they are used to compute the detail signal G I

by wavelet functions. Then, these estimated coefficients are
transformed to the next lower level I − 1 by applying a low-
pass filtering, i.e., the pyramid algorithm using the proposed
low-pass filtermatrix L I−1. At the lower level I−1, the coef-
ficient vector is updated by the lower-resolution data set(s)
2 introduced at this level. This updated coefficient vector
is then used in combination with wavelet functions to cal-
culate the detail signal G I−1. Continuing this process until
the lowest level i ′ of the MRR, all data sets are introduced
into the scheme at different resolution levels and the coef-
ficient vectors as well as the detail signals are obtained. At
each lower resolution level, the coefficients from the pyra-
mid algorithm are combined directlywith the new data set(s),
through the parameter estimation procedure. In the two-scale
model presented by Klees et al. (2018), the coefficients from
the high-resolution level are used to generate a new pseudo
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Fig. 1 The developed MRR scheme based on the pyramid algorithm. The text in blue highlights the novelty of this work

data set (with the same resolution as the low-resolution data
set), which is then combined with the low-resolution data set
to estimate the coefficients of the lower level. However, the
authors point out that the high-resolution data set is required
to have a larger area coverage than the low-resolution data
set (due to edge effects), which frequently cannot be fulfilled
when dealing with real data. In this study, we solve this limi-
tation by the direct combination of the coefficient vector and
the new data set(s), in analogy to a Kalman filter.

In this research, we additionally demonstrate that: (1) dif-
ferent observation types can be introduced into the evaluation
model at the spectral level of their highest sensitivities, which
makes it possible to benefit from the individual strengths of
each data set optimally; (2) since all computations within
the pyramid algorithm are based on linear equation systems
(Schmidt et al. 2015), all covariance information can easily
be calculated following the law of error propagation from the
higher levels and serve as input for the lower levels; (3) as
the number of required SRBFs decreases from the highest
level to the lower levels, the design matrices of the lower-
resolution data sets are now calculatedwith a smaller number
of grid points, which reduces the computational effort signif-
icantly. We test the MRR based on the pyramid algorithm by
using simulated data and then apply it to real data in different
study areas. The modeling results are directly compared to
those obtained from the single-level approach and the MRR
without using the pyramid algorithm (where the coefficients
are estimated independently at each level using all types of
observations) in order to highlight the benefits of the MRR
based on the pyramid algorithm.

This work is organized as follows: In Sect. 2, we intro-
duce the fundamental concepts of theMRR based on SRBFs,
the wavelet functions, and the pyramid algorithm. Section3

explains the newly developed MRR procedure based on the
sequential parameter estimation, and shows how the coef-
ficient vector from the pyramid algorithm is updated by
including new observations at the lower levels. Sections4
and 5 present the performance of our approach based on sim-
ulated and real data, respectively. The model configuration
is explained, and the developed strategy for reducing edge
effects is demonstrated. The results are evaluated and dis-
cussed, and comparisons are made with both the single-level
approach and the MRR without pyramid algorithm. Finally,
Sect. 6 provides conclusions and outlook.

2 Multi-resolution representation

2.1 Spherical radial basis functions

In general, SRBFs are isotropic localizing functions centered
at grid points Pk on a sphere �R with radius R (Freeden
et al. 1998; Schmidt et al. 2007), and can be defined by the
Legendre series

B(x, xk) =
nmax∑

n=0

2n + 1

4πR2

(
R

r

)n+1

Bn Pn(rT rk), (1)

wherein x = r · r is the position vector of an arbitrary point
P(ϕ, λ, r), with latitude ϕ, longitude λ, and radial distance
r = |x| = R + h′; h′ is the height of P over the sphere
�R ; r = [cosϕ cos λ, cosϕ sin λ, sin ϕ]T is the correspond-
ing unit vector. xk = R · rk is the position vector of a grid
point Pk . Pn is the Legendre polynomial of degree n, which
is a function of the spherical distance between the point P
and the grid point Pk . nmax is the maximum degree of the
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Fig. 2 Spectral degree ni and spatial resolution ρi of each resolution level i in the MRR

expansion. Bn is the Legendre coefficients, which specify
the shape of the SRBFs. In case of Bn = 1 for all degree
values n = 0, 1, . . . , nmax, the SRBF is defined as the repro-
ducing kernel Krep(x, xk), which has the ability of the unique
reproduction of a harmonic function. To bemore specific, the
convolution of a harmonic function F(x) (band-limited with
n = 0, 1, . . . , n′ ≤ nmax) with the reproducing kernel Krep

is equal to the original function (Schmidt et al. 2007), i.e.,

F(x) = (Krep ∗ F)(x). (2)

Any gravity observation y(x) can be represented as a
series expansion in terms of the SRBFs, i.e.,

y(x) − e(x) =
K∑

k=1

dk B(x, xk) + s(x), (3)

where K and dk are the number of grid points and the
corresponding series coefficients, respectively. s(x) is the
truncation error, and e(x) is the observation error. It is worth
mentioning that the general expression (1) of the basis func-
tions B(x, xk) needs to be adapted for describing different
gravitational functionals (e.g., the gravity disturbance δg or
the gravity anomaly �g). A list of basis functions adapted
to different functionals can be found in Koop (1993) and Liu
et al. (2020a).

2.2 Multi-resolution representation

The fundamental idea of theMRR is to split a given input sig-
nal into a smoothed version and a number of detail signals by
successive low-pass filtering (Schmidt et al. 2007). Follow-
ing Schmidt et al. (2006), the MRR of the gravity functional
F(x) can be expressed as

F(x) = F̄(x) +
I∑

i=i ′
Gi (x) + s(x) (4)

where F̄(x) is a reference model, i.e., usually the long-
wavelength component from a global gravity model (GGM),

and it is used as the background model within the remove-
compute-restore (RCR, e.g., Forsberg 1993) procedure.
Gi (x) is the detail signal of resolution level i , and s(x) is
the truncation error.

To set up the resolution level i , the frequency domain
needs to be discretized. Each resolution level defines a fre-
quency band, and thus, includes a certain number of degree
values. In this study, the upper boundary (maximum degree
value) ni of each level is defined as

ni = 2i − 1. (5)

It is worth mentioning that the resolution levels can also be
adapted differently, i.e., the base 2 in Eq. (5), which spec-
ifies the range of the frequency bands, can be chosen as a
different number (see Schmidt et al. 2007 for more details).
Figure2 (cf. Lieb et al. 2016) visualizes the discretization of
the frequency domain, and the relation between the resolu-
tion level i and its corresponding spectral degree ni as well
as spatial resolution ρi . The corresponding maximum spa-
tial resolution of level i is ρi = πR/ni , with R the Earth’s
radius.Gravity data obtained fromdifferent observation tech-
niques can then be classified according to their spectral
resolution. Terrestrial, airborne, and shipborne observations
are high-resolution regional data, thus, they cannot be used
to estimate the low-frequency part. Therefore, they should
be combined with the medium-resolution satellite altimetry
measurements, and the low-resolution satellite gravimetry
data, such as GRACE and GOCE.

2.3 Wavelet functions

SRBFs (1) can act as high-pass, low-pass or band-pass filters,
depending on the chosen Legendre coefficients Bn , and a har-
monic function F(x) can be filtered by it through a spherical
convolution (Schmidt et al. 2007; Liu et al. 2020b). In case of
using a band-limited SRBF, e.g., a spherical scaling function
B(x, xk) =: 	i (x, xk,i ), which means the Legendre coeffi-
cient Bn =: φn,i > 0 for degreen = 0, 1, . . . , nmax =: 2i−1
and φn,i = 0 for degree n > 2i − 1, the SRBF acts as a low-
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pass filter. Based on the scaling function, a spherical wavelet
function�i (x, xk,i ), which can be interpreted as a band-pass
filter, is defined as

�i (x, xk,i ) = 	i (x, xk,i ) − 	i−1(x, xk,i )

=
2i−1∑

n=0

2n + 1

4πR2

(
R

r

)n+1

ψn,i Pn(rT rk,i )
(6)

where xk,i is the position vector of the grid point Pk,i at
resolution level i , and theLegendre coefficientsψn,i are com-
puted as

ψn,i = φn,i − φn,i−1. (7)

The detail signal Gi (x) of level i in Eq. (4) can then be
defined in terms of the spherical wavelet function as

Gi (x) =
Ki∑

k=1

dk,i�i (x, xk,i ), (8)

where Ki and dk,i are the number of grid points and the
corresponding series coefficients, respectively, at the level
i . As explained in Liu et al. (2020b), the coefficients dk,i
do not depend on the choice of the SRBFs, as soon as the
SRBFs are band-limited up to the same degree, i.e., their
Legendre coefficients are equal to 0 for all degree values
n > 2i − 1. Thus, the same set of unknown coefficients dk,i
at level i can be used with both the spherical scaling function
and the spherical wavelet function of the same level. Also,
it is possible to use different types of SRBFs in the analysis
step (in which the unknown coefficients are estimated) and
in the synthesis step (in which the estimated coefficients are
used to calculate the output gravity models), respectively.

In this study, we use the following spherical scaling func-
tions (see Schmidt et al. 2007; Lieb et al. 2016):

1. The Shannon function, which could be interpreted as the
reproducing kernel (see Sect. 2.1), its Legendre coeffi-
cients are given by

φSha
n,i =

{
1 for n ∈ [0, 2i − 1]
0 else

. (9)

2. The Blackman function, its Legendre coefficients are
given by

φBla
n,i =

⎧
⎨

⎩

1 for n ∈ [0, 2i−1 − 1]
(A(n))2 for n ∈ [2i−1, 2i − 1]
0 else

, (10)

Fig. 3 The Blackman wavelet function at different resolution levels, in
the spatial domain (upper, ordinate values are normed to 1), and in the
spectral domain (bottom)

where

A(n) = 21

50
− 1

2
cos

(
2πn

2i

)
+ 2

25
cos

(
4πn

2i

)
. (11)

The Shannon scaling function is used in the analysis step to
estimate the unknowncoefficients, and theBlackmanwavelet
function (with Legendre coefficients ψ Bla

n,i = φBla
n,i −φBla

n,i−1)

is applied in the synthesis step to calculate the detail signals
at each level. The reason for using the Shannon function in
the analysis step is to avoid the loss of spectral information.
An SRBF with smoothing features, such as the Blackman
function, is used in the synthesis step to reduce erroneous
effects (Lieb et al. 2016; Liu et al. 2020b). Figure3 visu-
alizes the characteristics of the Blackman wavelet function
in the spatial (upper plot) and the spectral domain (bottom
plot) for different resolution levels. As we can see, the Black-
man wavelet function has smoothing features. At the same
time, it has strict band-pass features, i.e., only the Legendre
coefficients within the spectral band [2i−2, 2i ) are not zero.
The spectral weight, which is defined by the Legendre coeffi-
cients, increases fromdegree 2i−2 to 2i−1 and decreases from
degree 2i−1 to 2i . In the spectral domain, the corresponding
frequency band becomes wider at higher resolution levels.
In the spatial domain, with increasing resolution level i , the
peak becomes sharper.

2.4 The pyramid algorithm

Freeden (1999) shows that the coefficients of neighboring
resolution levels depend on each other linearly, and thus, can
be computed successively. Therefore, the pyramid algorithm
can be set up to determine the coefficients of the lower res-
olution levels from the coefficients of the higher level by a
low-pass filtering. This procedure is based on a down sam-
pling strategy, as the number of coefficients decreases at each
level. With the pyramid algorithm, the coefficients at level i
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(i = i ′, i ′ + 1, . . . , I − 2, I − 1) can be expressed as

di |i+1 = Li di+1 (12)

�di |i+1 = Li�di+1L
T
i (13)

where Li is a Ki × Ki+1 low-pass filter matrix, transform-
ing the Ki+1 × 1 coefficient vector di+1 of the higher level
i + 1 to the Ki × 1 coefficient vector di |i+1 of the lower
level i . �di |i+1 is the covariance matrix of di |i+1 obtained
from the covariance matrix �di+1 following the law of error
propagation.

According to Schmidt et al. (2007), the low-pass filter
matrix Li can be decomposed as

Li = W iH i (14)

where H i is a Ki × Ki+1 matrix containing the reproducing
kernel Krep(xk,i , xk,i+1) between the grid points Pk,i+1 (k =
1, 2, . . . , Ki+1) of level i + 1 and the grid points Pk,i (k =
1, 2, . . . , Ki ) of level i .W i is the Ki ×Ki diagonal matrix of
the integration weights associated with the grid points Pk,i
of level i , and it depends on the implemented type of grid.
Although the Reuter grid (Reuter 1982) is one of the most
commonlyusedgrids in regional gravityfieldmodeling, there
are no previous studies about how to define W i for this type
of grid. In this study, we develop a strategy to set up the
corresponding integration weights, which read

wi = 4πR2

Zi
(15)

where Zi is the total number of the Reuter grid points on
the sphere at level i . Reuter grids are regarded as equidis-
tributed point systems on the sphere (Fengler et al. 2004;
Eicker 2008), and the corresponding integration weights are
constant for each grid point.

3 Parameter estimation

In this paper, a new MRR scheme is developed based on
the pyramid algorithm using sequential parameter estima-
tion. The initial step of the MRR procedure is to estimate the
unknown coefficient vector d I = [d1,I , d2,I , . . . , dKI ,I ]T
at the highest resolution level I using parameter estima-
tion (Koch 1999; Schmidt et al. 2007). Assuming that P
groups of observations are used at level I , the estimated coef-
ficient vector d̂ I and the corresponding covariance matrix
D(̂d I ) = �̂dI can be obtained as (Liu et al. 2020a, b)

d̂ I =
⎛

⎝
P∑

p=1

(
1

σ 2
p,I

AT
p,IP p,IAp,I

)
+ 1

σ 2
μ

Pμ

⎞

⎠
−1

⎛

⎝
P∑

p=1

(
1

σ 2
p,I

AT
p,IP p,I yp,I

)
+ 1

σ 2
μ

Pμμ

⎞

⎠ (16)

�̂dI =
⎛

⎝
P∑

p=1

(
1

σ 2
p,I

AT
p,IP p,IAp,I

)
+ 1

σ 2
μ

Pμ

⎞

⎠
−1

(17)

yp,I is the observation vector of the pth gravity data set used
at level I , P p,I is its positive definite weight matrix, and
Ap,I is the design matrix, which contains the corresponding
(adapted) scaling functions. μ is the expectation vector of
the coefficient vector d I , and Pμ is its given positive definite
weight matrix. σ 2

p,I and σ 2
μ are the corresponding variance

factors for the observations yp,I and the prior information
μ, respectively.

After estimating the scaling coefficient vector and its
covariance matrix, they are used to calculate the scaling
coefficient vector d I−1|I and the corresponding covariance
matrix �dI−1|I of the next lower level, by applying the pyra-
mid algorithm according to Eqs. (12) and (13). Then, instead
of transforming the coefficient vector d I−1|I directly to the
next lower level I − 2, which is the usual procedure in pre-
vious studies about the pyramid algorithm, it is updated by
the gravity observations introduced at this level I − 1. The
updated coefficient vector d I−1 is then transformed to the
level I − 2 following Eqs. (12) and (13). Assuming that Q
groups of observations yq,I−1 are introduced at level I − 1,
the combination of yq,I−1 and d I−1|I is realized through the
parameter estimation:

⎡

⎢⎢⎢⎢⎢⎣

y1,I−1
y2,I−1

...

yQ,I−1
d I−1|I

⎤

⎥⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎢⎣

e1,I−1

e2,I−1
...

eQ,I−1

ed

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

A1,I−1

A2,I−1
...

AQ,I−1

I

⎤

⎥⎥⎥⎥⎥⎦
· d I−1 with

D

⎛

⎜⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎢⎣

y1,I−1
y2,I−1

...

yQ,I−1
d I−1|I

⎤

⎥⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎟⎠

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
1,I−1P

−1
1,I−1 0 0 . . . 0

0 σ 2
2,I−1P

−1
2,I−1

...
...

...

... 0
. . .

...
...

...
...

... σ 2
Q,I−1P

−1
Q,I−1 0

0 0 . . . 0 �dI−1|I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)
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The updated coefficient vector of level I − 1 is estimated as

d̂ I−1 =
⎛

⎝
Q∑

q=1

(
1

σ 2
q,I−1

AT
q,I−1Pq,I−1Aq,I−1

)
+ �−1

dI−1|I

⎞

⎠
−1

⎛

⎝
Q∑

q=1

(
1

σ 2
q,I−1

AT
q,I−1Pq,I−1yq,I−1

)
+ �−1

dI−1|I d I−1|I

⎞

⎠

(19)

with the covariance matrix

�̂dI−1 =
⎛

⎝
Q∑

q=1

(
1

σ 2
q,I−1

AT
q,I−1Pq,I−1Aq,I−1

)
+ �−1

dI−1|I

⎞

⎠
−1

(20)

The variance factors σ 2
1,I−1, σ

2
2,I−1, . . . , σ

2
Q,I−1 of the data

sets y1,I−1, y2,I−1, . . . , yQ,I−1 are estimated by the vari-
ance component estimation (VCE, Koch and Kusche 2002).

The combination of yI−1 = [ yT1,I−1, yT2,I−1, . . . ,

yTQ,I−1]T and d I−1|I can also be solved in analogy to the
Kalman filter (Kalman 1960), where d I−1|I and �dI−1|I can
be regarded as the predicted state vector and the related pre-
dicted covariance matrix, respectively. Then the corrected
state vector d I−1 as well as its covariance matrix �dI−1 are
computed by incorporating the involved measurements yI−1
at level I − 1

d̂ I−1 = d I−1|I + K I−1
(
yI−1 − AI−1d I−1|I

)
(21)

�̂dI−1 = (I − K I−1AI−1)�dI−1|I (22)

where K I−1 is the gain matrix

K I−1 = �dI−1|I A
T
I−1

(
AI−1�dI−1|I A

T
I−1 + �yI−1

)−1

(23)

with AI−1 = [AT
1,I−1, AT

2,I−1, . . . , AT
Q,I−1]T , and �yI−1

being the covariance matrix of the observation vector yI−1.
After taking into account the matrix identities, the solution
delivered by Eqs. (21) and (22) ends up identical to Eqs. (19)
and (20). We refer to Koch (1999) and Erdogan et al. (2020)
for the details of the matrix identities.

In the synthesis step, the estimated coefficient vector d̂ I−1

and its covariance matrix �̂dI−1 are used to calculate the
estimated detail signal Ĝ I−1 as well as its covariance matrix
�̂GI−1

Ĝ I−1 = B I−1 d̂ I−1 (24)

�̂GI−1 = B I−1�̂dI−1B
T
I−1, (25)

where Ĝ I−1 = [Ĝ I−1(x1), Ĝ I−1(x2), . . . , Ĝ I−1(xC )]T is
the vector of the estimated detail signal values at the com-
putation points x1, x2, . . . , xC of the output gravity model.
B I−1 is the design matrix, which contains the Blackman
wavelet functions �I−1(xc, xk,I−1), as defined in Eq. (6),
between the computation points of the gravity model and the
grid points of level I − 1.

The developed MRR procedure is summarized in Fig. 4:
after determining the estimated coefficient vector d̂ I at the
highest level I , it can be used to compute the detail signal
Ĝ I and to start the pyramid algorithm, i.e., to calculate the
coefficient vector d I−1|I of the next lower level. Then, this
coefficient vector d I−1|I is updated by introducing the obser-
vations at level I−1. Continuing this process until the lowest
level of the MRR, the scaling coefficients and the detail sig-
nals of each level can be obtained, and thus, the final gravity
functional is obtained according to Eq. (4). In this process,
the input gravity data obtained from different observation
techniques can be introduced into the estimation model at
the resolution level of their highest sensitivities. Hence, they
are able to contribute to the final model with maximum grav-
ity information. Typically, the terrestrial data are used at the
highest level. Then the shipborne or airborne data can be
introduced at a level lower, followed by the altimetry data and
the satellite gravity data, if applicable (see Fig. 2). Another
advantage of including data by levels is that the high frequen-
cies of the airborne data, which have large noise (Childers
et al. 1999), could be excluded to guarantee a stable solu-
tion (Jiang and Wang 2016). Moreover, since the data are
now introduced at the lower levels which require less grid
points, the size of the design matrices, and consequently, the
computation time is significantly reduced.

4 Validation with simulated data

4.1 Data

In the following, the MRR based on the pyramid algorithm
is first realized and evaluated using simulated data to ben-
efit from the availability of an accurate validation data set
serving as the “truth”. The study area is between 10◦ and 20◦
longitude and between 39◦ and 45◦ latitude (Fig. 5), covering
parts of South Europe, the Adriatic Sea, and the Tyrrhenian
Sea. Five types of gravity observations are used, namely ter-
restrial, airborne, and altimetry data, as well as satellite data
from GOCE and GRACE. These data are simulated from
the global gravity model GECO (Gilardoni et al. 2016), with
the position of the observations provided by the IAG-ICCT
(International Association of Geodesy - Inter Commission
Committee on Theory) Joint Study Group (JSG) 0.3 (“Com-
parison of current methodologies in regional gravity field
modeling”), running from 2011 to 2015. All observations
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Fig. 4 The multi-resolution representation (MRR) based on the pyramid algorithm

are simulated in the sense of disturbing gravity field quan-
tities, i.e., functionals of the disturbing potential. A detailed
data description can be found in Liu et al. (2020a). The ter-
restrial observations (yellow dots in Fig. 5) are generated on
a regular grid at the surface of the topography (DTM2006.0,
Pavlis et al. 2006) with a grid spacing of 5′ (which corre-
sponds to a spatial resolution of 10km). They are simulated
up to spherical harmonic (SH) degree and order (d/o) 2190,
in terms of the first order radial derivatives of the disturbing
potential. The airborne data (red dots in Fig. 5) are located
over the Adriatic Sea along synthetic flight tracks with an
altitude of 2.5km, generated in terms of the first order radial
derivatives of the disturbing potential up to SH d/o 1600. The
altimetry data (green dots in Fig. 5) are simulated up to SH
d/o 1000 in terms of geoid height N , based on the real ground
track of the altimetry mission Envisat (Extended Mission).
The GOCE (grey dots in Fig. 5) and GRACE (blue dots in
Fig. 5) data are simulated up to SH d/o 250, based on real
satellite orbits with a time span of 61 days and one month,
respectively.They are used in termsof the second-order radial
derivatives of the disturbing potential for GOCE and the dis-
turbing potential differences between the two satellites for
GRACE. Observation noise is also generated and added to
the gravity data, while the noise level is chosen according to
the assumptions of the JSG 0.3. White noise with standard

Fig. 5 The study area (observation area ∂�O ) and simulated gravity
data, including terrestrial (yellow dots), airborne (red dots), altimetry
(green dots), GOCE (grey dots), andGRACE (blue dots) data. The black
rectangle represents the investigation area ∂�I , where the final gravity
model is calculated

deviations of 0.01 mGal, 1 mGal, and 0.03m is added to the
terrestrial, airborne, and altimetry data, respectively. Colored
noise (Austen and Grafarend 2004; Naeimi 2013) is added to
the satellite data of GOCE and GRACE, with standard devi-
ations of 10 mE and 8 · 10−4 m2/s2, respectively. Validation
data are disturbing potential values simulated from GECO
with a spatial resolution of 5′ × 5′ and a maximum degree of
2190.
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Table 1 The data sets involved
at each resolution level i

i 1 2 3 4 5 6 7 8 9 10 11

data sets GGM GRACE GOCE altimetry airborne terrestrial

4.2 Model configuration

In this study case, the highest resolution level of MRR is
chosen as I = 11, considering the spatial resolution of the
data (see Fig. 2). The terrestrial data are used at the high-
est level to calculate the unknown coefficients of this level
following Eq. (16), with the expectation vector μ set to the
zero vector and the weight matrix P p,I and Pμ set to be the
identity matrix I (Lieb et al. 2016; Liu et al. 2020a, b). As
listed in Table 1, the airborne data are included at level 10,
the altimetry data are then added at level 9, followed by the
GOCE observations at level 8 and GRACE observations at
level 7. The long-wavelength component (up to level 6) is
modeled by the GGM within the RCR procedure, i.e., the
background model GECO up to spherical harmonic degree
n6 = 26 − 1 = 63 is removed from each observation, and
then restored to the estimatedmodel in the synthesis step. The
single-level model and the MRR without the pyramid algo-
rithm (see Sect. 1) are also calculated to serve as comparison
scenarios. For the single-level model, all observations are
combined at level 11, with the long-wavelength component
(up to degree 63) modeled by GECO. For the MRR without
pyramid algorithm, the unknown coefficients are estimated
at each resolution level by combining all types of observa-
tions, and these coefficients are used to calculate the detail
signals of each level. Wu et al. (2018) point out that the exist-
ing publications lack comparisons between the MRR and
the single-level approach. Thus, the direct comparison of the
single-level approach, the MRR without pyramid algorithm,
and the MRR based on the pyramid algorithm, presented in
this study fills this gap in current literature.

The Reuter grid is used, which generates a homogeneous
coverage of equidistributed grid points on the sphere. The
total number Z of Reuter grid points on the sphere is decided
by a control parameter γ , and γ + 1 denotes the number of
points along the meridian (Eicker 2008). In this study, we
choose the parameter γ to be equal to the maximum spectral
degree ni of the expansion at each resolution level i (Wittwer
2009; Bentel et al. 2013b). In regional gravity fieldmodeling,
the computation area ∂�C , where the SRBFs are located,
needs to be chosen larger than the observation area ∂�O ,
where the observations are given (Fig. 5), and ∂�O needs
to be larger than the investigation area ∂�I , where the final
gravitymodels are computed, i.e., ∂�C ⊃ ∂�O ⊃ ∂�I . This
hierarchy is necessary to mitigate edge effects. The margin
size ηC,O between the computation area ∂�C and the obser-
vation area ∂�O is determined following (Lieb et al. 2016),
with

ηC,O = 360◦

ni cos(|ϕmax|) (26)

where ϕmax is the maximum latitude value. The margin size
is influenced by the shape of the SRBFs; they become wider
at the lower resolution levels (i.e., when nmax is smaller, see
Fig. 3), and thus, a larger margin size has to be chosen to
reduce edge effects (Liu et al. 2020b). In this case, the ηC,O is
chosen as 0.3◦, 0.6◦, 1.2◦, 2.4◦, 4.8◦ for the levels 11, 10, 9,
8, 7, correspondingly (as shown in Fig. 6). Consequently, the
number of unknown coefficients is decided by the generated
Reuter grid points that are located inside the computation area
∂�C of each resolution level (which amounts to K11 = 7759,
K10 = 2238, K9 = 856, K8 = 326, and K7 = 157). In
the single-level approach, the margin size ηO,I between the
observation area ∂�O and the investigation area ∂�I is usu-
ally chosen the same as ηC,O . For the MRR, multiple values
of ηC,O are chosen for the different resolution levels. Numer-
ical investigations in this work show that it is sufficient to
choose the margin size ηO,I as the median of the applied
ηC,O of each level, i.e., ηO,I = 1.2◦. Figure5 (black rectan-
gle) presents the corresponding investigation area ∂�I .

In case of the MRR based on the pyramid algorithm, only
specific observation groups are used at the higher resolu-
tion levels, which means the involved observations do not
have full coverage over the observation area ∂�O . This will
cause strong edge effects at the border of the high-resolution
observations in the calculated detail signals, and further con-
taminate the final gravity model. For example, at level 11, the
terrestrial data are available only in the onshore area. Strong
edge effects inG11 thus showup at the border of the terrestrial
data coverage, i.e., near the coastal lines (as will be shown in
Sect. 4.3). As pointed out by Lieb (2017), it is a challenging
task to handle the edge effects properly in case of MRR, and
it is one of the major difficulties in the practical realization
of the pyramid algorithm. To address this issue, we develop a
strategy in this study to reduce the edge effects in the calcu-
lated detail signals of each level. Besides the observation area
∂�O (Fig. 5) and the investigation area ∂�I (black rectangle
in Fig. 5) for the whole study area, we also define ∂�Oi and
∂�Ii for each resolution level i when calculating the detail
signals. To be more specific, ∂�Oi depends on the data cov-
erage of the observation groups involved at this level, and
∂�Ii is adapted to ∂�Ii = ∂�Oi ∩ ∂�I . As an example,
∂�O11 is defined as the onshore areas in Fig. 5 since only ter-
restrial observations are involved at level 11. Consequently,
∂�I11 (see Fig. 7) is adapted to the onshore areas within the
investigation area ∂�I . The detail signals Gi of level i are
then calculated within ∂�Ii .
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Fig. 6 The estimated scaling coefficients at level 11 (first row), and lev-
els 10, 9, 8, 7 (second to fifth row). From the second to the fifth row, the
left column represents the coefficients di |i+1 estimated directly from
the pyramid algorithm, and the right column represents the updated

coefficients di after including the new data at this level (following the
procedure explained in Sect. 3). The black rectangle inside each plot
shows the observation area ∂�O
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Fig. 7 The detail signal Gi of theMRRbased on the pyramid algorithm
before (left column) and after (mid column) adapting the investigation
area ∂�Ii , as well as the modeled gravity signal (in terms of disturbing

potential) F I ′ = F̄+∑I ′
i=7 Gi (right column) from level 11 (first row)

to level 7 (fifth row), with F̄ (right column, last row) modeled from
GECO

4.3 Modeling results and discussions

The estimated coefficients at each level are plotted in Fig. 6,
and the black rectangle inside each plot represents the obser-
vation area ∂�O (Fig. 5). From the first row (level 11) to
the fifth row (level 7), the margin size ηC,O increases and
the number of unknown coefficients decreases. The top row

shows the scaling coefficients d11 at level 11, which are esti-
mated from the terrestrial observations only. Comparing the
plot of d11 to Fig. 5, it is clear that the values of the coef-
ficients are almost zero in the area where no terrestrial data
exist, and larger absolute values are observed where these
data are available. This shows that additional gravity infor-
mationwith respect to the backgroundmodel is only captured
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at the locations with terrestrial data coverage, which is rea-
sonable (Liu et al. 2020b). The left plot at the second row
shows the scaling coefficients d10|11 calculated directly from
the pyramid algorithm, and the right one displays the updated
coefficients d10 after including the airborne data at level 10.
Comparing the two plots at level 10, we can see that the air-
borne observations insert additional gravity information in
the region where they are located. They fill parts of the data
gaps from the terrestrial data, and the gravity signals captured
from the previous level (level 11) are preserved at the same
time. At level 9 (third row), the same behavior as at level 10
can be observed, i.e., the altimetry data fill data gaps at the
left bottom corner of the observation area, and meanwhile,
the gravity signals from level 10 are kept. At level 8 (fourth
row) and level 7 (fifth row), the satellite data which have even
distributions are used. It can be observed that the right plots
showdarker colors (larger values) than the left ones inside the
observation area ∂�O , which indicate the contribution of the
GOCE and GRACE data at level 8 and level 7, respectively.

Figure7 (left column) visualizes the detail signals Gi of
theMRRbased on the pyramid algorithm at each level, which
show the spectral information contained in the corresponding
frequency ranges (see Fig. 2). At level 11, the detail signal
G11 captures gravity information only in onshore area where
the terrestrial data are located. However, at the border of the
terrestrial data, strong edge effects showup. The same is valid
in the detail signal G10 of level 10, large edge effects occur
at the border of the data coverage, i.e., in the coastal area of
the Tyrrhenian Sea. We thus apply the strategy explained in
Sect. 4.2 to reduce these edge effects by defining ∂�Ii , i.e.,
by setting ∂�I11 = ∂�O11 ∩∂�I and ∂�I10 = ∂�O10 ∩∂�I .
After level 9, the involved observations have full coverage
over the observation area ∂�O (i.e., ∂�Ii = ∂�I ), and no
edge effects are visible within ∂�I . Correspondingly, the
new detail signals of level 11 and 10 after adapting ∂�Ii
are presented in Fig. 7 (mid column), and the edge effects
are significantly reduced. Figure7 (right column) shows the
gravity signal F I ′ = F̄ + ∑I ′

i=7 Gi of each level. The grav-
ity signal (in terms of disturbing potential) of level 6 (F̄,
right column, last row) is the long wavelength component
from the global gravity model GECO, which only contains
very smooth information.When the resolution level increases
from level 7 (fifth row) to level 11 (first row), more and more
fine structures show up in both the detail signals and the
gravity signals.

The final modeling result (Fig. 7 right column, first row) is
evaluated by the validation data, and their difference is visu-
alized in Fig. 8d. For comparison, the single-level model, the
MRR without pyramid algorithm, and the MRR based on
pyramid algorithm before adapting the ∂�Ii are also com-
puted, and their differences to the validation data are shown
in Fig. 8a, b, and c, respectively. The corresponding statistics

are listed in Table 2. As shown in Fig. 8a, the single-level
model delivers small differences compared to the validation
data in onshore regions, where the terrestrial data are avail-
able. However, in offshore regions with no terrestrial data
coverage, the differences are quite large. This result demon-
strates that the single-level approachmajorly recovers gravity
information from the terrestrial observations, and the contri-
bution of other measurements which are sensitive to lower
spectral bands is not captured sufficiently. It indicates that the
single-level model is not able to benefit from all the obser-
vation types, as mentioned in the Introduction, and the MRR
is necessary, especially in cases where the terrestrial data do
not have large coverage over the study area. After applying
the MRR, the differences w.r.t. the validation data in off-
shore regions decrease (see Fig. 8b), which indicates that the
gravity information in lower-resolution observations are bet-
ter extracted. The MRR without pyramid algorithm delivers
an RMS error of 4.21 m2/s2, which is 23% smaller than
the one given by the single-level approach. However, Fig. 8b
still shows the same pattern as the single-level model, i.e.,
larger differences show up in the offshore regions compared
to the onshore regions. Although the MRR (without pyramid
algorithm) already gives better results than the single-level
approach, it is not optimal. Indeed, Lieb (2017) points out
that the detail signals of different levels become correlated
when all the observation groups are used at each level and
recommends the implementation of the pyramid algorithm
as further development of the MRR approach.

In case of the MRR based on the pyramid algorithm, as
shown in Fig. 8d, the differences between the calculated grav-
ity model and the validation data do not show dependency
on the distribution of certain types of observations, i.e., the
offshore area does not show larger differences than the area
with terrestrial data. It suggests that each observation type
makes a contribution to the final result, and the MRR bene-
fits from all the measurements. This statement is supported
by the fact that theRMSvalue delivered by theMRRbased on
the pyramid algorithm decreases by 50%w.r.t. the one deliv-
ered by the single-level approach, and 35% w.r.t. that of the
MRR without pyramid algorithm. The comparison between
Fig. 8d and Fig. 8c shows the benefit of applying the pro-
posed strategy for reducing edge effects, i.e., by adapting the
investigation area ∂�Ii at each level. The edge effects at the
border (outside the coverage) of the terrestrial data are sig-
nificantly reduced in Fig. 8d. The improvement achieved by
applying this strategy is 21% in terms of RMS, w.r.t. the val-
idation data. However, at the border (inside the coverage) of
the terrestrial observations, the edge effects remain the same
after adapting ∂�Ii , as also shown in the calculated detail
signals at level 11 and level 10 (Fig. 7, mid column). Thus,
a main challenge to be faced in future studies regarding the
MRR based on the pyramid algorithm is to further reduce
these edge effects.
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Fig. 8 Differences between the modeled disturbing potential results
and the validation data, delivered by a the single-level approach, b the
MRR without pyramid algorithm, c the MRR based on the pyramid

algorithm before adapting the investigation area ∂�Ii , and d the MRR
based on pyramid algorithm after adapting ∂�Ii to reduce edge effects

Table 2 Comparison between the single-level model, the MRR without pyramid algorithm, and the MRR based on the pyramid algorithm, with
respect to the validation data in terms of disturbing potential values (unit [m2/s2])

Min Max RMS

Single-level model (Fig. 8a) −38.22 21.64 5.48

MRR without pyramid algorithm (Fig. 8b) −27.13 27.64 4.21

MRR based on pyramid algorithm (before adapting ∂�Ii , Fig. 8c) −20.98 12.82 3.44

MRR based on pyramid algorithm (after adapting ∂�Ii to reduce edge effects, Fig. 8d) −11.63 11.41 2.72

5 Validation with real data

5.1 Data andmodel configuration

After testing the performance of the MRR based on the
pyramid algorithm with simulated data successfully, we
apply this method to real data sets. Figure9 shows the
study area, located between 5.9◦ and 14.3◦ longitude and
between 53.2◦ and 55.3◦ latitude, covering Northern Ger-
many, parts of the North Sea and the Baltic Sea, and a small
part of the Netherlands and Denmark. The gravity obser-
vations are taken from Lieb et al. (2016), where a detailed

data description can be found. The terrestrial data (yellow
dots in Fig. 9) are provided by the Federal States Schleswig-
Holstein, MecklenburgWest-Pomerania, and Lower Saxony,
with 23,465 observations covering Northern Germany. This
high-resolution data set is given in terms of absolute gravity g
and used in terms of gravity anomalies�g. Two airborne data
sets (orange flight tracks in Fig. 9) are provided by the Fed-
eral Agency of Cartography and Geodesy (BKG), one over
the North Sea, and another one over the Baltic Sea, collected
in 2007/2008 and 2006, respectively. They have been pre-
processed and are provided in terms of gravity disturbance
δg; the data accuracy is estimated by BKG to be 2 to 3 mGal.
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Fig. 9 The observation area
∂�O and the distribution of real
gravity data, including terrestrial
(yellow dots), shipborne (red
dots), airborne (orange dots),
and altimetry (green dots) data.
The black rectangle represents
the investigation area ∂�I ,
where the final gravity model is
calculated

The flight campaign over theNorth Sea contains 5,651 obser-
vations, with an average flight altitude of 592m; the flight
campaign over the Baltic Sea contains 6,508 observations,
with an average flight altitude of 832m. The 1,183 shipborne
measurements (red dots in Fig. 9) in the Baltic Sea are pre-
processed and provided by the Federal State Mecklenburg
West-Pomerania in terms of gravity anomalies �g. Satellite
altimetry data (greendots inFig. 9) are providedby theDGFI-
TUM altimetry group in terms of geoid height N , which is
derived from the measured sea surface heights (SSH) and
the instantaneous dynamic ocean topography (iDOT) (Bosch
et al. 2013). The altimetry data include measurements from
multiple altimetry missions, namely the ERS-1e/f (Geode-
tic Mission phase, 1994–1995, cycles Nr. 139-143), Envisat
(Extended Mission phase, 2010–2012, cycles Nr. 096-113),
Jason-1 (Geodetic Mission phase, 2012–2013, cycles Nr.
500-537), andCryosat (2010-2013, cyclesNr. 011-035),with
an average spatial resolution of 10km in the North Sea. In the
Baltic Sea, we use a sparse altimetry data distribution delib-
erately in order to test our approach also in areas with poor
data coverage. For each altimetry measurement, corrections
derived from a multi-mission cross-calibration (Bosch et al.
2014) have been applied. The satellite data from GOCE and
GRACE are included in this study case as the satellite-only
global gravity model (GGM), instead of direct observations.
Lieb et al. (2016) point out that the study area is too small
(especially in the north–south direction) in comparison with
the spatial resolution of the satellite data, and thus, does not
allow resolving reliable long-wavelength information. In this
way, we present the performance of the MRR based on the
pyramid algorithm in two different scenarios of using the
satellite data, i.e., as direct observations and as a satellite-only
GGM, in the simulated (Sect. 4) and real case, respectively.

The highest resolution level of the MRR is chosen as
I = 12 according to the spatial resolution of the data, and
only the terrestrial data are used at the highest level to cal-
culate the unknown coefficients of this level and to start
the pyramid algorithm. The shipborne and the airborne data

are included at level 11 and level 10, respectively, and the
altimetry data are added at level 9. The long-wavelength com-
ponent up to level 8 (degree 255) is modeled by using the
RCR procedure with GOCO06s (Kvas et al. 2021), which
enhances an optimal combination of the GOCE and GRACE
data. Same as in the simulated case (see Sect. 4), we also
calculate the single-level model and the MRR without the
pyramid algorithm for comparison. The number of Reuter
grid points at each level is determined in the same man-
ner as for the simulated study case, and the margin size
ηC,O between the computation area ∂�C and the observa-
tion area ∂�O is determined following Eq. (26). In this study
case, the ηC,O is chosen as 0.15◦, 0.3◦, 0.6◦, 1.2◦ for levels
12, 11, 10, 9, correspondingly. Consequently, the number of
unknown coefficients amounts to K12 = 6638, K11 = 2111,
K10 = 684, and K9 = 315 at each resolution level. The
margin size ηO,I between the observation area ∂�O and the
investigation area ∂�I (black rectangle in Fig. 9) is chosen
as the median of the applied ηC,O , i.e., ηO,I = 0.45◦. As
discussed in Sect. 4.2, strong edge effects show up in the cal-
culated detail signals of the high resolution levels, due to
the fact that the involved observations at these levels do not
have full coverage over ∂�O . Again, we apply the strategy
proposed in Sect. 4.2, and define ∂�Ii = ∂�Oi ∩ ∂�I for
calculating the detail signals at each level. In the following,
we always refer the MRR based on the pyramid algorithm to
the one after adapting ∂�Ii .

5.2 Modeling results and discussions

The elements of the estimated coefficient vectors d̂i and their
standard deviations at each level i are plotted in Fig. 10;
the black rectangle inside each plot represents the observa-
tion area ∂�O . As we can see, the estimated coefficients at
level 12 only contain additional gravity information from the
terrestrial data. Consequently, their standard deviations are
much larger in regionswithout terrestrial observations,which
is reasonable. At level 11, level 10, and level 9, the shipborne,
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Fig. 10 The estimated scaling coefficients (left column) and their standard deviations (right column) from level 12 (first row) to level 9 (fourth
row). The black rectangle inside each plot represents the observation area ∂�O

airborne, and altimetry data insert additional information,
respectively. The new observations introduced at the lower
levels fill the data gaps from the terrestrial observations, and
the features from the highest level are preserved at the same
time. The behavior of the standard deviations coincides with
the coefficients, i.e., from level 12 to level 10, the standard
deviations at the locations with shipborne and airborne data
decrease, and from level 10 to level 9, thosewithin the altime-
try data coverage decrease.

The computed regional quasi-geoid models from the
single-level approach, the MRR without pyramid algorithm,
and the MRR based on the pyramid algorithm (after adapt-
ing ∂�Ii ) are firstly validated using GPS/leveling data in
Northern Germany (Gruber et al. 2011). 53 data points are
available within the investigation area ∂�I (black rectan-

gle in Fig. 9), which are derived from GPS-based ellipsoidal
heights and leveling-based normal heights. The differences
between the computed height anomaly results and those
from GPS/leveling are shown in Fig. 11, and the correspond-
ing statistics are listed in Table 3. The mean value of the
difference between the gravimetrically determined height
anomalies and those from GPS/leveling amounts to around
33cm. It is consistent with the value reported in Gruber
et al. (2011)), and is caused by differences in the height
system definition, i.e., the local normal heights in Germany
refer to the vertical datum of the European Vertical Network
(EUVN), which is defined as the equipotential surface of the
Earth’s gravity field passing through the “Normaal Amster-
dams Peil” (NAP; fundamental tide gauge in Amsterdam, the
Netherlands). Figure11 shows clearly that theMRRbased on
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Fig. 11 Differences between the
calculated quasi-geoid model
and the GPS/leveling data,
delivered by a the single-level
approach, b the MRR without
pyramid algorithm, and c the
MRR based on the pyramid
algorithm. Note that the mean
values of the differences are
removed

Table 3 Comparison between the single-level approach, theMRRwith-
out pyramid algorithm, and the MRR based on the pyramid algorithm
w.r.t. GPS/leveling data (in terms of quasi-geoid, note that the mean

differences are removed) and w.r.t. the DTU17 grid (in terms of gravity
anomaly)

w.r.t. GPS/leveling data (unit [cm]) w.r.t. the DTU17 grid (unit [mGal])

Min Max RMS Min Max RMS

Single-level −6.48 9.36 3.43 −53.24 60.46 7.22

MRR without pyramid algorithm −9.70 4.57 2.88 −44.17 39.63 6.25

MRR based on pyramid algorithm −4.50 5.15 2.23 −7.98 8.70 2.67

the pyramid algorithm delivers the smallest difference w.r.t.
the GPS/leveling data, with an RMS error of 2.23cm, which
is 23% smaller than the one given by the MRR without pyra-
mid algorithm, and 35% smaller than that of the single-level
model. Such large improvements demonstrate the benefits
of applying the MRR based on the pyramid algorithm. Fig-
ure11a (single-level approach) and Fig. 11b (MRR without
pyramid algorithm) show much larger differences w.r.t. the
GPS/leveling data in comparison to Fig. 11c (MRR based
on the pyramid algorithm), even in regions with very dense
terrestrial data (between 11◦ and 13.85◦ longitude).

In the offshore area where no GPS/leveling data are avail-
able, the computed gravity models are validated with the
2′ × 2′ altimetric gravity anomaly grid DTU17 (Andersen
and Knudsen 2019). The differences between the com-
puted gravity anomaly results and the DTU17 are shown in
Fig. 12, and the corresponding statistics are listed in Table

3. Again, the largest differences are delivered by the single-
level approach (Fig. 12a), with an RMS error of 7.22 mGal.
In the single-level model, much smaller differences show up
in regions with shipborne data coverage (see Fig. 9), which
suggests that itmajorly recovers gravity information from the
high-resolution shipborne data, and information from other
measurement types are not captured sufficiently. This result
agrees with the conclusion drawn from the simulated study
case (see Sect. 4.3). In comparison to the single-level model,
applying theMRR (without pyramid algorithm) improves the
modeling results by 13%. Comparing Fig. 12b with Fig. 12a
reveals significant improvements in regionswhere the altime-
try data are located (between 6.35◦ and 7◦ longitude). This
indicates that the MRR extracts gravity information from the
lower resolution altimetry data better than the single-level
approach. However, it can still be seen from Fig. 12b that
larger differences occur in regions without shipborne data
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Fig. 12 Differences between the
calculated gravity anomaly
results and the DTU17 grid in
the offshore area, delivered by a
the single-level approach, b the
MRR without pyramid
algorithm, and c the MRR based
on the pyramid algorithm

coverage. The differences w.r.t. the DTU17 are significantly
reduced when the MRR based on the pyramid algorithm is
applied, giving an RMS of 2.67 mGal, which is 57% smaller
than the one delivered by the MRR without pyramid algo-
rithm, and 63% smaller than that of the single-level approach.
The improvement achieved by applying the MRR based on
the pyramid algorithm is larger in the offshore area than in
the onshore area, where high-resolution terrestrial data are
available. It demonstrates that the single-level approach can-
not represent the lower-resolution data in an optimal way,
and the MRR based on the pyramid algorithm is beneficial,
especially in regions where high-resolution gravity data are
not available. In the MRR based on the pyramid algorithm
(Fig. 12c), larger differences again occur at the border of
the higher-resolution gravity data (shipborne and airborne),
which is caused by edge effects, as discussed in Sect. 4.3.

It is worth mentioning that validation in the offshore area
was also made w.r.t. the NKG2015 gravimetric quasi-geoid
model (Ågren et al. 2016) to rule out possible conflicts
when validating our results with external models also based
on satellite altimetry data as the DTU17. The differences
between the calculated quasi-geoid results and theNKG2015
model show the same pattern as those w.r.t. the DTU17, i.e.,
Fig. 12. Thus, this comparison is not shown in detail here
due to the length of the manuscript. In comparison to the
NKG2015, the improvement achieved by applying the devel-
oped MRR scheme based on the pyramid algorithm is 39%

w.r.t. the MRR without pyramid algorithm, and it reaches
55% w.r.t. the single-level approach, in terms of RMS value.

6 Conclusion and outlook

This study focuses on the spectral combination of different
types of gravity observations through the MRR based on the
pyramid algorithm,which is realized successfully for the first
time in connection with sequential parameter estimation, in
regional gravity field modeling. We address in this paper the
challenges regarding the practical realization of the pyramid
algorithm. Firstly, a successive low-pass filtering for trans-
forming the estimated coefficients of the highest resolution
level to lower resolution levels is proposed. Furthermore, we
develop an innovative MRR scheme where the coefficients
for calculating the detail signals at each lower resolution
level are not only determined from the pyramid algorithm
but also updated by a direct combination with observation
groups included according to their spectral resolution. The
main contribution of our approach is that the final gravity
model is able to benefit from the individual strengths of each
observation type. The settings of the MRR are characterized,
including the type of the SRBFs, the location of the SRBFs,
and the margin size applied at each level. When the MRR
based on the pyramid algorithm is applied, only specific
data sets are used at the higher resolution levels, resulting
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in strong edge effects at the border of the high-resolution
observations. Therefore, we additionally develop a suitable
strategy to adapt the investigation area ∂�Ii at each level i
according to the coverage of involved observations. This is
also a remarkable innovation of our approach as it reduces
edge effects in the calculated detail signals (and therefore,
the final gravity model) significantly.

The performance of the MRR based on the pyramid
algorithm is evaluated in comparison to the conventional
single-level approach and the MRR without pyramid algo-
rithm using both simulated and real gravity data. In the
simulated study case, the RMS obtained by the MRR based
on the pyramid algorithm is 50% smaller than the one deliv-
ered by the single-level approach, and 35% smaller than the
one given by the MRR without pyramid algorithm, compar-
ing to the validation data. Moreover, the single-level model
shows very large differences to the validation data in offshore
regions,which indicates that the contribution of other types of
observations is not captured as sufficiently as the terrestrial
observations. This shows that the single-level approach is
biased towards the terrestrial measurements, and the gravity
information frommeasurements with medium to low resolu-
tion is not extracted sufficiently. Applying theMRR (without
pyramid algorithm) improves the modeling results in off-
shore regions. However, it still shows larger differences w.r.t.
the validation data in the offshore area in comparison to the
onshore area. Thus, it is important and beneficial to apply
the MRR based on the pyramid algorithm, especially when
the high-resolution terrestrial data do not have full coverage
over the study area.

In the real data case, the MRR based on the pyramid
algorithm is applied for regional gravity field modeling in
Northern Germany. The terrestrial, shipborne, airborne, and
altimetry observations are used at the resolution levels 12,
11, 10, and 9, respectively. At the lower levels, the grav-
ity information obtained from the highest level is preserved,
and at the same time, the new observations introduced at
this specific level contribute with additional information and
fill data gaps. Such features in the estimated coefficients
are observed in both the simulated and real data cases. The
computed gravity models are validated in terms of quasi-
geoid and gravity anomaly with GPS/leveling data in land
and the DTU17 in offshore area, respectively. In compari-
son to the single-level approach, the improvement achieved
by the MRR based on the pyramid algorithm is 35% and
63% in terms of RMS value, w.r.t. the GPS/leveling data and
DTU17, respectively. Comparedwith theMRRwithout pyra-
mid algorithm, the RMS error obtained by the MRR based
on the pyramid algorithm decreases by 23% and 57% w.r.t.
the GPS/leveling data and DTU17, respectively. Such signif-
icant improvements further demonstrate the benefits of the
MRRbased on the pyramid algorithm.Results in the real case
again show that both the single-level approach and the MRR

without pyramid algorithm cannot recover gravity informa-
tion from the lower-resolution observations as sufficient as
the MRR based on the pyramid algorithm.

In both the simulated and the real cases, larger differences
w.r.t. the validation data in the MRR based on the pyramid
algorithm occur at the border of the high-resolution data, due
to edge effects. Thus, a major concern for future work is to
develop strategies for further reducing the edge effects in
the calculated detail signals. We also plan to include the full
variance-covariance matrix of the GGM. In current studies,
theweightmatrix of the prior information (used at the highest
level) is defined as the identity matrix, which is computation-
ally easy. However, better andmore realisticmodeling results
might be obtained by considering the full covariance matrix
of the GGM instead of a simple identity matrix. In addition,
it is also planned for future work to use real GOCE gravity
gradients and K-band range-rate (KBRR) data fromGRACE
as direct observations in our developed MRR scheme.
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